Source code for nachos.constraints.sum

from nachos.constraints.abstract_constraint import AbstractConstraint
from nachos.constraints import register
from typing import Union, Generator

[docs]@register('sum') class Sum(AbstractConstraint): ''' Summary: Defines the constraint on the mean value of a factor. The constraint is that the mean for two datasets should be close to a specified value. '''
[docs] @classmethod def build(cls, conf: dict): return cls()
[docs] def __call__(self, c1: Union[list, Generator], c2: Union[list, Generator], ) -> float: r''' Summary: Computes .. math:: \lvert \sum c1 - \sum c2 \rvert Inputs ----------------------- :param c1: the list of values to constrain associated with dataset 1 :type c1: Union[list, Generator] :param c2: the list of values to constrain associated with dataset 2 :type c2: Union[list, Generator] Returns ----------------------- :return: the constraint score (how close the constraints are met) :rtype: float ''' return abs(self.stat(c1) - self.s1_sum) + abs(self.stat(c2) - self.s2_sum)
[docs] def stat(self, c1: Union[list, Generator]) -> float: ''' Summary: computes the sum of the values in c1. Inputs ------------------ :param c1: the list of values over which to compute the sum ''' c1 = list(c1) # for multivalued problems, average values in c1 return float(sum(sum(c) / len(c) for c in c1))